
Master equations through cumulant techniques

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 107

(http://iopscience.iop.org/0305-4470/23/2/008)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A: Math. Gen. 23 (1990) 107-115. Printed in the U K  

Master equations through cumulant techniques 

Adam J Makowski 
Institute of Physics, Nicholas Copernicus University, ul. Grudziadzka 5/7, 87-100 Torun, 
Poland 

Received 30 May 1989 

Abstract. We discuss master equations of three types: with no memory at all, with a 
restricted memory and with a complete memory involved. They are derived with the help 
of cumulant expansions based on proper time orderings and are then applied to a simple 
collisional model. A general formula for matrix elements of the so-called n o  cumulants 
and low-order cumulants of other types is also proposed. 

1. Introduction 

One of the ways of deriving master equations starts from the Liouville equation 
ap /a t  = (-i/ h)Ap, where Ap = [ H ,  p ]  and H is the system Hamiltonian. This equation 
is then reduced so as to eliminate some quantities which can, in a way, be treated as 
irrelevant. To this end, suitable projection operators are usually applied [ l ]  and as a 
result an equation of motion for the reduced density operator is derived. 

Such a method can also be joined with the cumulant technique first introduced 
into physics by Kubo [2]. This idea has found many applications, e.g. in molecular 
[3] and spin [4 ,5 ]  relaxations, the theory of lineshapes [6] and the stochastic collision 
theory [7,  81. 

It appeared that master equations derived in this fashion can be of two types. A 
local equation with no memory follows if the partial time ordering (pro) [4,8] 
prescription is chosen. Another equation is completely non-local in time (full memory) 
which is the result of the total time ordering ( n o )  [ 5 ]  prescription involved. 

The possible ways of the time orderings are systematised in a recent paper [9] 
where it was shown that apart from the above-mentioned master equations there is a 
large class of equations with a restricted memory. They are based on a PTO-like 
expansion which we shall call the modified partial time ordering ( MPTO). 

Contrary to most treatments, we do not deal here with equations of motion for the 
reduced density operator itself but rather with those for its diagonal elements. The 
method of the reduction scheme used in this paper has been described in detail in [7]. 
We shall only mention essential points of the approach. 

To this end, let us consider a dynamical system with degrees of freedom which can 
be divided into two classes of ‘relevant’ and ‘irrelevant’ ones, i.e. H = Hi + H , +  Hri. 
Concerning the r and i variables we assume that (i) interactions between all degrees 
of freedom in both groups vanish asymptotically ( f  + *CO) (ii) initially ( t o  = -CO) the 
r and i quantities are not correlated. Moreover, the division of variables into two 
groups is done in such a way that the two subsystems are weakly correlated. This is 
usually the case when timescales related to the subsystems are quite different. 
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Under the above assumptions it is not difficult to show [7] that the relevant part 
of the density operator in the interaction representation is given by 

where 

~ ( t )  = exP[(i/h)Ar(t-t~)lpr(t)  
P (  t )  = pi( t)pr( t )  = exp[-(i/ h )Ai(t - tollpi( to)pr( t )  

Z+:i(t) =exp[( i /h)AJt-  to) IHr i ( t ) -  

The symbol T stands for the Dyson chronological operator and Hri describes an 
interaction between the two subsystems under consideration. 

Now we project out the diagonal components of D in a basis In) defined by 
Hrln)= E,ln) and perform an ensemble average {a(t)}=Tri[p,(to)a(t)]  withTripi(to) = 
1. Then assuming that the initial density matrix is diagonal in the n representation 
and denoting { (n la( t ) ln)}= P,(t) ,  we get 

where 

In section 2 the two equations and the idea of cumulants will be used to derive 
master equations of three types. Section 3 deals with a general matrix representation 
of TTO cumulants. In section 4 we apply the master equations to a simple collisional 
model. 

2. The survey of master equations 

A very attractive method of deriving master equations is based on using the concept 
of cumulants. It consists, in our case, in re-expressing the matrix {M(t)} in terms of 
sums of cumulants: 

The symbol a(*) stands for the kth-order cumulant operator of any type (see below) 
and the sum over k runs in general from one to infinity. All the lower limits of the 
integrals are the same and are equal to an initial time, say to.  The subscript 0 of exp 
distinguishes between the appropriate ordering prescriptions. This becomes clear when 
{ M ( t ) }  is expanded in the form: 
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[‘’+U d l  [ ‘ k + l + l  ‘ k + l + s - l  

k + l + l  dfk+i+i. .  . [ dtk+i+s*(s)(tk+i+i 3 .  . . , t k + l + s )  

+. . . .  ( 5 )  

The next term in ( 5 )  and the general rule of the expansion are symbolically presented 
in table 1. The consecutive integers 0, 1, 2 and so on, stand for the upper limits to,  
t i ,  t2 , .  . . , of the integrals in the expansion ( 5 ) .  Different time orderings are attributed 
to different values for the Greek indices p, v, S etc. 

Table 1. The symbolic representation of the first four terms in expansion ( 5 ) .  

First limit Second limit Third limit (k-1)th limit kth limit 

0 1 2 . . .  k - 2  k - 1  
F k + l  k + 2  . . .  k + l - 2  k + / - 1  
F + Y  k + / + l  k + 1 + 2  . . .  k + / + s - 2  k +  / + s  - 1 
p + v + s  k + / + s + l  k + l + s + 2  . . .  k + / + ~ + p - 2  k + / + s + p - l  

For the choice p = k, v = 1, S = s etc, we get the well known n o  expansion [ 5 ] .  
Here, the order of time limits is total. As we have shown previously [9], this leads to 
the generalised non-local master equation with complete memory 

where the matrix elements of the TTO cumulants are denoted by Of;’). 
Another choice is given by the values p = 1, p + v = k +  1, p + v +  6 = k +  I +  1 etc, 

i.e. the Greek indices from the first column in table 1 are replaced by the proper values 
from the second one. Now, the chronological order of the upper time limits is only 
preserved in some groups of integrals (cf equation ( 5 ) ) .  Such a partial time ordering 
leads to a completely local, memory-free master equation [ 81 

with the matrix elements of the PTO cumulants coded as K“,+”. 
Apart from the above equations, a large class of master equations with a restricted 

memory can also be derived. Their number depends on the number of terms retained 
in the sum over k in (4). 

For one term (max(k) = l) ,  equation ( 5 )  reduces to the ordinary ‘perturbation’ 
series for the first-order cumulant a‘”. This case is represented by a single (first) 
column of table 1 with p = v = S = . . . = 1 and it is not interesting since @ ( I )  can always 
be eliminated for Hermitian interactions [4]. That is why we have neglected first-order 
cumulants from the very beginning and used this in the notation of ( 6 )  and (7). Clearly, 
all sums in (4) and ( 5 )  may be understood as starting from the value 2. 
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When max( k )  = 2 in (4), two different time orderings result (the first two columns 
of table 1). They lead to equations (6) and (7) with s = 1. 

If in equation (4) max( k )  = N (in general N = CO), then there are N - 2 additional 
ordering prescriptions of the type of ( 5 )  related to the values of p = 2,3, . . . , k - 1 and 
u = k ,  S = l  etc. Now the values of p, p + u ,  p + v + S  , . . . ,  are replaced by 2, k + 2 ,  
k + 1 + 2, . . . , respectively or by the proper values from the other columns in table 1. 
All the choices have been called the modified partial time ordering prescriptions (MPTO) 
and one member of the family ( p  = 2 )  yields the master equation [9] 

where 

For p = 3 the time argument of pk in (8) would be t 2 ,  for p = 4 it would be f 3  and so 
on. Note that the memory is now partly taken into account and we expect to find the 
results of (8) to be between those of (6) and those of (7). This point is more fully 
elaborated in section 4. 

Technical details of the above derivations can be found in [9] while the matrix 
elements of the MPTO cumulants as well as n o  and m o  ones will be determined 
in section 3. 

3. Cumulant matrix elements 

Equations (6)-(8) are not useful in practice until matrix elements of the cumulant 
operators 8, K and Q are determined. This can be done by equating the expansion 
(5) with the series obtained from the expression (3). Such an approach allows one to 
easily find only the first few terms. However, for the n o  case a general formula can 
be derived. The result is presented here in the form of a theorem. 

Theorem. Under the assumptions leading to (2) and (3) the matrix elements of the 
Nth-order -no cumulant present in (6) are given by 

where, as in (2), {. . .} denotes an average over irrelevant variables, the sums are over 
pairs of different indices, and 

ALb,cd E [ H:i( ) lacSbd - [ H:i( t ) l d b ~ o c *  (12) 
Besides, it follows immediately from (12) that for any N we have E, 

In order to prove (1 l ) ,  let us write (2) in an equivalent form 
= E n  &,:I = 0. 
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where ro  = a(to) is assumed to be diagonal matrix and A'X = [H:,( t ) ,  X I .  Then, we 
can immediately observe that for the first-order term we get 

{ ( A ' l r o ) f l f l }  =e {A5,.,Jr.",}=0 ( 1 4 a )  
IJ 

since 

A L a , b h  0 ( 1 4 b )  

for any a and b. One of the higher-order terms gives, for example, 

{ ( A  ' I A ' ~ A ' ~ A  ''u0)nn) 

= 

= { A ~ , , , , A : ; . . ~ I ( A ' ~ A ' ~ ~ ' ) ~ , }  

{A in, ,, ( A '2 A '3'4 go) } 
( I f ] )  

( i f / )  kl 

Thus, it is not difficult to show that the Nth-order term of ( 1 3 )  can be written in the form 

Because of ( 1 4 a ) ,  the contribution for N = 1 is zero. 
The matrix elements of the n o  cumulants O Y y )  may now be determined by equating 

like powers of h for (5) and  ( 1 6 ) .  For N = 2 and N = 3 the above theorem is obviously 
true, and we have: 

e'n','(tl 3 f 2 ,  ? 3 )  = 1 { ' ~ k n . , , ~ $ , k l ' 4 ~ / , p p } .  
! i f j )  ( h f l )  

In the case of an arbitrary N, equations (5) and (16 )  lead to the relation 

~ ~ ~ ' ( ~ ~ ~ . ~ ~ ~ ~ ~ ) + A ' , , ~ ! ( ~ ~ ~ . . ~ ~ ~ N ) =  c. . .c  {?\~fl,oA:;.k/ ...A:vv.r:A:;l,pp} (19) 
! I # / !  k l  U L  i r f r )  

where A\! ' represents symbolically the np matrix element of the sum of products for 
cumulants of a suitable order. 

For example, when N = 5 we have 

A!,?(L. .  . , t s )  =[@Yf l ,  tz)e '3i( t3 ,  t4 ,  t s ) lnP+[e i3) ( t l ,  t 2 ,  t 3 W 2 ) ( t 4 ,  t 5 ) ] , ,  (20) 
since, as discussed earlier, the first-order cumulants can be eliminated. Now using in 
(20) the complete set of states of the operator H, and bearing in mind the identity 
( 1 4 b ) ,  we get for A',,; a sum of two expressions like the R H S  of (19) with four summations 
taken over ( i  # j ) ,  ( k  f I ) ,  ( r  = s), ( U  f v )  and ( i  # j ) ,  ( k  = I), ( r  # s ) ,  ( U  f U). Subtract- 
ing the two contributions from the R H S  of (19), we will obtain ( 1  1) for N = 5 .  
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A generalisation to arbitrary N can be done in a similar way. It is, however, too 
lengthy to be presented here. Instead of that we shall show another, much simpler, 
idea for proving (11). 

We start from the equation a a / a t  = --(i/fi)[Hii, a] ,  the solution of which is ( 1 ) .  
The equation for (T can be written in the tetradic form both for diagonal as well as 
non-diagonal matrix elements. If that for the diagonal elements is additionally ensemble 
averaged, then: 

In the following, the formal solution of (21u) ,  with the initial density matrix taken to 
be diagonal, is repeatedly inserted into (21 b ) .  Extracting each time the diagonal matrix 
elements of a, we get after an infinite number of such manipulations an equation 
which, upon being compared with ( 6 ) ,  leads again to the result ( 1  1). Such a procedure 
has been shown to be convergent for a model problem [lo]. 

We were not able to derive general relations like ( 1  1 )  for cumulants of other kinds. 
That is not, however, an inconvenience since (i)  the no-l ike master equations give 
much better results than the other equations (see section 4) and (ii) low-order cumulants 
of the remaining kinds may also be determined from ( 1 1 ) .  The latter statement can 
be proved when low-order terms of expansion ( 5 )  for the n o ,  PTO and MPTO ( p  = 2 )  
time orderings are compared. This shows that 0"' = 0"' = K'" for i = 2, 3 and = 
Q'" # K'4' whereas the higher-order cumulants are all different. 

4. Applications to a model problem 

In this section we shall report some results obtained from integrations of ( 6 ) ,  ( 7 )  and 
(8) for the model Hamiltonian 

H i , (  t )  = G( t ) (a 'b-+ a-b') .  (22) 

It describes a collinear collision of two diatomic molecules treated as harmonic 
oscillators [ 111, where U* and b' are boson operators acting in the space of oscillator 
states of the first and second molecule, respectively. The analytical form of the function 
G( t )  depends on the assumed form of a classical trajectory of the relative motion of 
the molecules. 

In this semiclassical approximation the quantum ensemble average of ( 1  1) may be 
replaced by a classical one which involves delta functions along the classical trajectory. 
P,,(t) should not be understood as P n N (  t ) ,  which is a probability distribution for one 
oscillator to be in the state in) and the other one to be in the state IN). The product 
In)lN)= In, N )  is an eigenstate of the Hamiltonian H,= h w ( u + u - + ~ ) + h w ( b + b - + ~ ) .  

It has been shown [12] that for the model (22 ) ,  master equations of any order and 
any kind have solutions of the general form 

P 

5 =o 
P L - ~ ( P ,  t )=(- l )" 'k  1 h ( s ,  f)c(P, k, s)C(P, n, s). (23) 
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In the formula p = I + i = F+ f = 0,1 ,2 ,  . . . , and is the sum of initial or final quantum 
numbers of both oscillators. The symbol C(p,  j, s)  stands for the Clebsch-Gordan 
coefficient 

which obeys the identity [ 131 

f ( j ) c ( p , j + l ,  s ) + [ f ( j ) + f ( j - l ) l c ( p , j ,  s )  

+ f ( j - l ) C ( P , j - l ,  s ) = s ( s + l ) C ( P , j , s )  (25) 

where 

f( j )  = ( j  + 1 ) p  - j’ - j .  (26) 

An analytic form of the function h ( s ,  t )  in (23) depends on the order and the kind of 
the master equation under consideration. 

In order to see the differences in the solutions of (6) ,  (7 )  and (8), they have been 
solved up to the fourth-order cumulants. This corresponds to the values of s = 1 and 
s = 3 in the equations, since for the model (22) the third-order cumulants (s = 2) are zero. 

The functions h(s ,  t )  in each of the three master equations can be found in the 
following way. First we determine the matrix elements of the second- and fourth-order 
cumulants for the n o ,  PTO and MPTO cases in the basis of In, N )  states. Introducing 
then the parameter p and postulating solutions in the form of (23), we get with the 
help of (25) the unknown functions h(s, t ) .  Such a method has already been described 
in detail in [lo, 121 and here we only present the final solutions. 

The n o  master equation ( 6 )  leads to the function 

(Df)’ cos(D’t) + (D-)’ cosh(D-6) 
(0-y + ( D+)2  hT(s, 5 )  = 

where 

D*= [ * S ( S +  l ) + { s ( s +  1 ) [ 3 ~ ( ~ +  1 )  -4]}1’2]1’2 (28)  

t ( t )  =Lj‘ G ( t , )  dt , .  
h -x 

In the PTO case (equation (711, we get 

hP( s, 6 )  = exp{ - s (  s + 1 )[ t2 + ( t4/ 12)(7s2 + 7s - 2)]}. (30) 

The last case, the MPTO equation (8) yields 

hM(s ,&)=exp ( -6’ ,b ) F ( - b4;a, - ;, 662) 

where 

a = 2 s ( s + l )  (32a) 

b = { s ( s +  I ) [ s ( s +  1)-2]}’” (32b) 

and F (  a, p, x) is a Kummer function or degenerate hypergeometric function [ 141. 
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For comparison, the exact solution for the model ( 2 2 )  corresponding to the infinite- 
order n o  master equation (6) can also be found [lo] 

hE(s ,  6) = P,(cos 2 5 )  (33) 

with the P, being the Legendre polynomial of order s. 
The functions given in ( 2 7 ) ,  (30), (31) and (33) are plotted for s = 2 in figure 1 as 

a function of 6. The latter quantity can be considered as an average energy transferred 
during a collision. At low values of 6 all four approaches lead to very similar results 
indistinguishable in drawings. When the value of 6 is increasing, the solution of the 
master equation with no memory taken into account (P) tends to zero and fails for 
6 > 0.45. Making allowances for memory as in ( S ) ,  even if only partially, extends the 
applicability of the approximate theory (M)  as compared with the exact. one. As soon 
as the memory is completely considered, as in (6) ,  the obtained results (T) are closer 
to the exact (E)  ones than the other results. Moreover, they reflect the correct behaviour 
in the whole range of 6. A similar tendency has also been observed for higher values 
of s not presented here. 

To sum up: from among the three types of master equations, that given by ( 6 )  is 
highly recommended. For the equation to be useful in practice, a general formula 
(equation (1 1)) for the n o  matrix elements has been derived and applied to a simple 
model. It is the only known model for which exact solutions of non-local master 
equations can be found in a closed analytical form. 

As we have shown at the end of section 3 the formula (1 1) can also be used for 
the low-order PTO and MPTO cumulant matrix elements. As a result, the corresponding 
master equations can be written without any effort. In this work not only all possible 
time ordering prescriptions have been systematised but a detailed comparison between 
the predictions of different master equations has also been made. 

T 
I 
I 

I 

1. '. 
i 
i. -0.8 
\, 

i, M 

-"I 
-1 .OF 

Figure 1. The plot of the function h ( 2 , t )  for the modified partial ( M ) ,  total (T) and partial 
(P) time ordering master equations. The exact solution presented for comparison is denoted 
by the letter E. 
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The results of master equations of the three types discussed here (equations (6)-(8)) 
are exact in principle provided the appropriate terms are evaluated to infinite order. 
This follows from the fact that the expansion (5) is equated to all terms in the expansion 
of (3). Equations (6)-(8) yield identical results for s =  1 in the Markovian limit. 
However, in general, when the next terms in s are taken into account and the Markovian 
assumption does not hold, the three equations predict a very different behaviour. This 
is clearly shown in figure 1 for a simple model Hamiltonian. 

Though the totally non-Markovian master equation (6) is recommended for exact 
calculations, this does not mean that equations of the other types are useless. The 
‘standard’ cumulant expansion, first introduced by Kubo [2], corresponding to what 
is known as the PTO approach, has b?en found to be useful for time domain analysis 
[5]. No memory is involved in this case. In contrast, the n o  cumulant method, 
introduced in [5], seems to be more convenient for the frequency domain when one 
wants to calculate, e.g., spectra or lineshapes [3,6]. Now, the master equation is 
completely non-local with the memory effects totally taken into account. 

In between the two extreme possibilities, a large class of MFTO master equations 
with a restricted memory can be found. They are much simpler to use than n o  
equations and can lead to better results than PTO ones. The comparison made in this 
work gives a contribution for better understanding the range of validity and limitations 
of these methods. 
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